Kelvin Ly

kelvin@threefortiethofonehamster.com, (407)-269-7092, Pembroke Pines, FL

University of Central Florida

Cummulative GPA: 3.944

UNIVERSITY OF CENTRAL FLORIDA

Cummulative GPA: 3.905, Magna Cum Laude

Objectives

To begin and pursue a career in electrical engineering or firmware engineering

Skills

- Professional experience in electronics design (mostly mixed signal/digital, a little RF), PCB layout (KiCad, Altium Designer)
- Some experience with analog filter design, digital signal processing, image processing (CUDA interoperating with OpenCV)
- Hobbyist level PCB assembly, reflow, and rework, SPICE circuit modeling, and reverse engineering (hardware, firmware, protocols)
 Some familiarity with I2C, SPI, UART, CAN, SDIO, Ethernet(10BASE-T), QAM, on-off keying, PCM, PPM, 802.11a/b, MIPI CSI, DOB, 2000
- parallel camera interface, JESD204, SerDes, AMBA/AXI, DDR1, SPI Flash, LVDS, Bluetooth Low Energy, USB 1.0, one wire • Familiarity with nRF52, MSP430, PIC12, ATTiny/ATMega, Atmel SAM, STM32, Silicon Labs C8051 microcontrollers
- Implemented I2C, SPI, UART, PWM, VGA, Ethernet RMII, parallel camera, Wishbone, HyperBus interfaces on FPGA logic (Lattice, AMD/Xilinx, Intel/Altera)
- Fluent in C99, C++14, Python 2/3, Go, Verilog
- Working knowledge of x86/x64/MIPS/MSP430 assembly, Java, LaTeX, MATLAB, Multisim, Xilinx ISE/Vivado, VHDL, Linux (scripting and low-level userland programming, some kernel module programming), JTAG/SWD, TCL

PROFESSIONAL EXPERIENCE

TERIS IMS Senior Electrical Engineer / Electrical Engineer, Cooper City FL (full ime)	May 2018 - present			
 Created PCB designs, layouts, sourced parts, and assembled and tested various PCBs to create reproducible and manuficulding some flexible PCBs Developed firmware and support software for devices and prototype designs as needed, including work in image process and FPGAs, and IMU-based sensor fusion Developed custom kernel driver to support custom camera sensor on Jetson TX2 Reverse engineered various PCBs, serial protocols, etc Tested devices to ensure compliance with IEC60601 and other standards 	ıfacturable designs, sing using OpenCV			
Cassina Technologies Software Engineer, Cooper City FL (part time)	CTOBER 2018 - PRESENT			
 Developed firmware for Bluetooth LE-based device and designed Bluetooth LE application level communication protocols to use in device Developed Android app to interface with and to control Bluetooth LE-based device 				

Fluorometric Instruments Design Engineer, Tarpon Springs FL (part time)

• Designed PCBs part time for oxygen sensors, allowing client to test manufacturable products

• Created designs, layouts, sourced parts, and assembled and tested PCBs to create reproducible and manufacturable designs

• Developed **firmware** and **support software** for devices as needed

University of Central Florida Undergraduate/Graduate Researcher, Orlando FL

- Researched defenses and attack mitigations for the Internet of Things, producing four publications and one book chapter
- Designed and assembled PCBs for the lab, producing tools and prototypes for a wide variety of projects
 - Built mixed-signal or digital designs incorporating **Texas Instruments**, **Expressif**, and **Atmel** microcontrollers
 - Designed architecture and IP cores for Nexys 4 Artix-7 FPGA to transceive Ethernet packets and crack homomorphic encryption as part of our second place entry in NYU CSAW ESC '15
 - Designed IP cores in Verilog to patch OpenRISC processor core, along with matching patches to GCC as part of our winning entry in NYU CSAW ESC '16

University of Central Florida Undergraduate Researcher, Orlando FL

- Studied feature extraction from EEG data, implementing SSVEP frequency detection that was later used in senior design project
 - Maintained and repaired **RAVEN II** medical robot running on **ROS robotics framework**, restoring it to operation and allowing its use under a new team in current research projects

INTERNSHIPS

IBM EXTREME BLUE INTERN, RTP NC

- Developed on-disk encryption for IBM Connections, creating a roadmap of design pitfalls for IBM's teams to work off of
- Implemented project in JavaScript and Node.js, with patches to existing Java and Python code and libraries, successfully providing encrypted context access and search indexing

November 2015 - May 2018

DECEMBER 2014 - MARCH 2015

May 2015 - August 2015

September 2017 - Present

MS, Computer Engineering

2016-2018

BS, Electrical Engineering

2011 - 2015

Google Software Engineer Intern, Chapel Hill NC

- Patched existing benchmarking code for Skia rendering engine, allowing collection of gigabytes of data per day into a single database
- Contributed code in C++, Python and Go to create actionable visualizations of benchmarking data, fulfilling Skia team's recommendations

NOTABLE PROJECTS

Project	Software/FPGA	Analog/RF	DSP/Control	Power/Misc
3D printer pick and place at- tachment (WIP)	Computer vision - based PCB and com- ponent semiautomatic registration, interfacing with 3D printer controls for bulk of motion		Stepper -driven theta axis, open loop second Z axis	Multiboard design, lots of mechanical design us- ing FreeCAD , Maxwell kinematic coupling
CNC controller	grbl based CNC driver using TMC2590 step- per motor controllers, ATtiny404 for stepper motor initialization			Four layer PCB layout, careful routing around current sense and MOS- FET gate traces, control signal isolation to reduce EMI issues
915 MHz 1 Mbps discrete RF transceiver (WIP)	Signal processing imple- mented on FPGA	Half duplex direct conversion IQ modu- lation/demodulation using discrete diode ring mixer, multiple VGA stages, discrete power amplifier de- sign	Error correction, AGC, and packet de- coding implemented on FPGA	Multi-board design
Capacitive linear encoder (rev. 3, WIP)	Bare metal dsPIC coded in C for Microchip dspPIC33	Variable gain amplifier stages, design for max- imizing dynamic range while reducing potential EMI performance degra- dation	Same as before	Use of cheaper op amps based on better noise analysis
FPGA-based logic analyzer based on iCE40 devkit	Logic signal encoding using hardware ring buffer, efficient signal encoding, hand written soft UART core			Hand written I2C de- coder in Python
Sensorless brushless DC mo- tor driver for RC plane (WIP)	FOC using STM32F301 driv- ing TI DRV8353 gate driver	-	State observer and FOC implemented in bare metal ARM	Layout designed for high current, space for heatsinking for MOS- FETs
Visible light transmitter and receiver	Bare metal ARM coded in C, using USB periph- eral for data transfer, MSP430 -based trans- mitter, signal processing code written in Python	Transimpedance pho- todiode front end with several stages of vari- able gain amplifiers and active bandpass filtering	Cortas phase lock loop, software- controlled AGC, BPSK demodulation with CRC checksum, PID- based automatic gain control	Space-constrained, low power transmitter design with capacitive- touch buttons, IMU for position sensing
RF broadband attenuator blocks	-	RF layout , routing ta- per design to transition from SMA connector to coplanar waveguide on two-layer FR4	-	(WIP) Aluminum hous- ing to reduce RF emis- sions
144 MHz Yagi-Uda antenna with discrete LNA	LNA designed using Jupyter Notebook, implemented noise calcu- lation code for scikit-rf	Infineon BFU520 based LNA, L-matching net- works designed using VNA measurements, antenna tuning and characterization using modified TinyVNA	-	Modified TinyVNA to have lower output power to avoid saturating BFU520 during mea- surements
Capacitive linear encoder (rev. 1/2)	Bare metal ARM coded in C for STM32F070C5T6	High impedance, low noise front end followed by cascaded active low pass filters into ADC driver	Computationally effi- cient digital filtering to remove harmonics and phase shift calcula- tion using CORDIC	-
Lunar Knights robotics team software lead (UCF) for NASA Mars Rover Competition	Software written in C++ using ROS framework using NVIDIA Jetson TX2, autonomous navigation and tele- operation	-	PID tuning for wheels and digging arm	Mitigated noise on digging arm position potentiometers, wrote code to interface with CAN-based motor controller
Mind-controlled wheelchair, senior design project (UCF)	Wheelchair controls implemented on Rasp- berry Pi 3 in Python 3	-	Feature extraction from electrodes on scalp, based on steady state visually evoked potential (SSVEP)	Designed laser cut joy- stick gimbal